
Projects

for the

Thymio Robot

in the

Aseba Studio Environment

Version 1.9.0

Moti Ben-Ari

http://www.weizmann.ac.il/sci-tea/benari/

and other contributors (see authors.txt)

c© 2013–15 by Moti Ben-Ari.

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain
View, California, 94041, USA.

http://www.weizmann.ac.il/sci-tea/benari/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Contents
1 Introduction 1

I Projects 5

2 The Cat Catches the Mouse 6

3 How Fast is the Thymio? 11

4 Line Following 19

5 Composing Music On-the-Fly 23

6 Odometry 26

7 Image Recognition 29

II Advanced Concepts in Robotics 33

8 Nonlinearity 34

9 Odometry in Two Dimensions 39

10 Control 43

11 Fuzzy Logic Control 49

12 Localization 55

13 Thymio the Surveyor 64

III Multiple Robots 69

14 Infrared Communications 70

15 Distributed Mutual Exclusion 74

Chapter 1

Introduction

This document describes projects for the Thymio robot using AESL, the textual program-
ming language of Aseba, and its Studio development environment. The document as-
sumes that you are familiar with the Thymio robot, for example, by constructing projects
using VPL, the visual programming language. You must understand the concept of an
event which causes an action. Elementary versions of some of these projects are contained
in the VPL tutorial; here we present better solutions that use the capabilities of AESL.

Project structure

Each chapter is structured as follows:

• Specification of the problem to be solved.

• Design of the program.

• Construction of a state machine for the robot.

• Declarations of constants and variables.

• Description of the event handlers and subroutines.

• Programming notes.

• Experiments for you to do.

I strongly suggest that you work on each project by yourself and only
then compare your solution to mine.

1

State machines

You stand in front of a vending machine and wait for a candy bar to be pushed out.
Nothing happens. You push a button to select which candy you want. Nothing happens.
Finally, you put some coins in the machine. Nothing happens. Again, you push a button
to make a selection. Now, the machine starts working and the candy is pushed out.

A vending machine is really a robot; it’s task is to give candy to people. The task of a
vending machine is divided into smaller subtasks and only one subtask is active at any
time. We say that the machine can be in several states and that there are conditions that
determine when the machine makes a transition from one state to the next. The states and
transitions can be described in the diagram of a state machine, where the states are the
ovals and the transitions are the arrows:

�
�

�
�
�
�

�
�
�
�

�
�expect

coins
expect

selection
wait for
candy

-put coin -press button

candy pushed

?

The state machine makes it clear why you won’t receive any candy just by standing in
front of the vending machine. Candy is pushed out only in the rightmost state which can
be reached only after putting coins and making a selection.

All our projects use state machines to describe the behavior of the robots. The state ma-
chine can be as simple as:

�
�

�
�

�
�

�
�off on-

press
center button

press center button

?

but usually it will be more complex because the robot—like a vending machine—must
perform several subtasks.

2

Overview of the projects

The document is divided into two parts. The first part (Chapters 2–7) presents projects
similar to those you constructed in VPL, extended to use the additional features of the
Thymio robot that can be accessed from AESL. The second part (Chapters 8–11) intro-
duces advanced concepts in robotics. Although the Thymio is too simple to fully explore
these concepts, it is powerful enough so that you can get a taste of what advanced work
in robotics is like.

Chapter 2: The cat catches the mouse The robot is a cat which searches for and catches
a mouse. This type of requirement is common when a robot has to locate an object
and move it someplace.

Chapter 3: How fast is the Thymio? The performance of the robot is measured. We com-
pute the speed and acceleration of the robot, and the relationship between the
amount of power applied to the motors and the acceleration of the robot.

Chapter 4: Line following An autonomous robot must be able to navigate, that is, to
move from its current position to a new position, for example, by following a line
displayed on the floor.

Chapter 5: Composing music on-the-fly The Thymio contains accelerometers which can
be used to measure both the attitude of the robot (because gravity is an acceleration
that always points downwards) and to sense if the robot is hit or shaken. This
project uses the accelerations obtained when the robot is shaken to compose music.

Chapter 6: Odometry Odometry is the calculation of a robot’s position and heading ob-
tained by starting at an initial position and using the measured velocity and time.

Chapter 7: Image recognition A robot must sense its environment in order to carry out
its tasks. This project demonstrates how a robot can search for a particular object
by recognizing its barcode.

Chapter 8: Nonlinearity A sensor is linear if the values it returns are a linear function
of what it measures. For example, a linear distance sensor might return the value
50 · d, where d is the distance to the object. It will return 50 if an object is 1 meter
away and 100 if the object were 2 meters away. The nonlinearity of a sensor can be
measured and used to calibrate the sensor.

Chapter 9: Odometry in Two Dimensions A wheeled robot that travels in a two-dimen-
sional plane can turn. This makes odometry calculations more complex.

Chapter 10: Control An autonomous robot must make decisions, such as in what di-
rection to turn and how fast to travel. The robot uses control algorithms such as
proportional control to make these decisions.

3

Chapter 11: Fuzzy logic The algorithms in the previous chapter used precise mathemat-
ical computations to control the robot. Fuzzy logic uses imprecise language to spec-
ify control algorithms.

Chapter 12: Localization Consider a robot is navigating within a known environment
such as a building for which it has a map. The robot uses localization algorithms in
order to determine its position within the environment.

Chapter 13: Surveying This project uses the Thymio to determine the location of an ob-
ject using two techniques: measuring the angle and distance to the object, and mea-
suring the angle to the object from two different positions.

Chapter 14: Infrared communication The infrared horizontal proximity sensors of the
Thymio robot are normally used for detecting objects, but they can also be used
for communication with another Thymio. This chapter describes techniques for
programming communications between two robots.

Chapter 15: Distributed algorithm Infrared communications is used to implement a sim-
plified version of the Ricart-Agrawala algorithm for distributed mutual exclusion.

Increasing the detection range of the sensors

Ordinary objects need to be very close to the Thymio before they are
detected by the horizontal proximity sensors. You can greatly increase
the range by attaching reflecting tape, such as used on bicycles, to the ob-
jects.a The settings of the thresholds and motor powers in the programs
in the archive will, of couse, have to be changed.

aMy thanks to Francesco Mondada for showing this to me!

References

• Visual programming and VPL: https://www.thymio.org/en:visualprogramming.

• Text programming: the AESL language, the Studio environment and the Thymio
interface: https://www.thymio.org/en:asebausermanual.

4

https://www.thymio.org/en:visualprogramming
https://www.thymio.org/en:asebausermanual

Part I

Projects

5

Chapter 2

The Cat Catches the Mouse

Specification

A cat turns left and right searching for a mouse. When it senses a mouse, it turns in the
direction of the mouse and pounces on it quickly. When the cat collides with the mouse,
it stops and announces its success.

�
�

@
@I

i
��6
i ��i

System design

The Thymio robot will be the cat which searches for a toy mouse. When the center button
is touched, the robot turns left and then right repeatedly searching for the mouse. When
the mouse is detected by one of the front horizontal proximity sensors, the robot turns
until the mouse is detected by the center proximity sensor. Then it quickly moves forward
in that direction and stops when the mouse is very close. The robot announces the cat’s
success by playing a victory tune: the first four notes of Beethoven’s Fifth Symphony.
The robot displays its current state in the top LEDs.

State machine

The program transitions sequentially through four states:

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�0=off 1=search 2=turn to 3=pounce- - -

?

• The transition from off to search occurs when the center button is touched.

6

• The transition from search to turn to occurs when the mouse is detected.

• The transition from turn to to pounce occurs when the center sensor detects the
mouse.

• The transition from pounce to off occurs when the center sensor detects that the
mouse is very close.

• Additionally, in all the states except off, touching the center button causes a tran-
sition to state off. (These transitions are not shown in the above diagram.)

The state search has substates for turning left and right, as does the playing of the sound.

Constants

• SCAN: The power of the motors during the left and right search. One wheel receives
positive (forward) power of this magnitude, while the other wheel receives nega-
tive (backwards) power of this magnitude.

• TIMER: The time between changes of direction during the search.

• TURN: The low power of the motors when turning to face the mouse.

• POUNCE: The high power of motors when pouncing on the mouse.

• DETECTION: The threshold at which a proximity sensor detects the mouse.

• COLLISION: The threshold at which a proximity sensor detects a collision.

Variables

• state: The current value of the state machine (0 .. 3).

• motor state: The direction (+1 = right, −1 = left) in which the cat is turning.

• sound state: The state of playing the victory tune (0 .. 4).

• i: An index variable for the loop that checks if the mouse is detected.

Event handlers and subroutines

• Event center button is touched: The event occurs when the button is released. The
subroutine on off is called.

7

• Subroutine on off: The robot is turned on by setting the state to 1 (search) if it is 0
and turned off by setting the state to 0 (off) if it is not. The subroutine initialize

is called.

• Subroutine initialize sets the initial values of the variables (state, sound state,
motor state), the motors, the LEDs and the timer (timer[0]).

• Event timer0 expires: If the robot is in state 1 (search), subroutine search is called.

• Subroutine search changes the direction of the motor from left to right or from right
to left. The five front sensors are sampled (in a loop) to determine if the mouse is
detected; if so, the state is changed to 2 (turn to).

• Event proximity sensor sampled (10 times per second): If the current state is 2 (turn
to), the subroutine turn to is called, while if the current state is 3 (pounce), the
subroutine pounce is called.

• Subroutine turn to: If the mouse is detected by the central sensor, the state is
changed to 3 (pounce) and the robot is driven forward rapidly. Otherwise, if the
mouse is detected by either of the left sensors, the robot is slowly turned to the left.
Otherwise, the mouse is detected by either of the right sensors, the robot is slowly
turned to the right.

• Subroutine pounce: If the central sensor detects that the mouse is very close, the
motors are stopped and the state is set to 0 (off). The first note of the victory tune
is played.

• Event sound finishes: This event occurs when the note that is currently being played
has finished. The next note in the sequence is played and the variable sound state

is incremented, until all four notes have been played.

• LEDs: The LEDs on top of the robot are lit with distinct colors in the follow-
ing subroutines: initialize, search, turn to, pounce, and in the event handler
sound.finished. The colors depend on the direction of the robot and on which
sensors detect the mouse.

Programming notes

Program file cat.aesl

Start each program with a title, author and copyright notice:

Thymio program: cat hunts mouse

Copyright 2013 by Moti Ben-Ari

CreativeCommons BY-SA 3.0

8

I suggest using the CreativeCommons BY-SA license, which allows anyone to copy and
modify your program, provided that your name remains in the program and provided
that they agree to let other people share their work.

Next, write comments explaining the constants and declarations of the variables with
comments:

Constants

SCAN - power of motors during search

TURN - power of motors during turn towards mouse

POUNCE - power of motors during pounce on mouse

TIMER - time between change of directions

DETECTION - threshold for the detection of the mouse

COLLISION - threshold for the detection of a collision with the mouse

Variables

var state # 0 = off, 1 = search, 2 = turn to, 3 = pounce

var motor_state # +1 = right, -1 = left

var sound_state # 0-4 for playing Beethoven’s Fifth

var i # loop variable

The values of the comments are set in the upper right corner of Aseba Studio, but com-
ments cannot be added directly so you should document them within the program.

The initialization should be comprehensive since you don’t know what the current state
of the robot is when you run the program. For example, I turned off the temperature LED
so that it won’t confuse me when I observe the display on the robot:

call leds.temperature(0,0)

I use a lot of subroutines to keep the size of program components small and easy to
read. In particular, I do very little in the event handlers themselves and put most of the
processing in a subroutine:

onevent prox

if state == 2 then

callsub turn_to

elseif state == 3 then

callsub pounce

end

The order of alternatives in an if-statement is important and you may have to experiment
to get the best results. The center sensor is checked before the side ones:

9

http://creativecommons.org/licenses/by-sa/3.0/

sub turn_to

if (prox.horizontal[2] > DETECTION) then

pounce

elseif (prox.horizontal[0] > DETECTION) or

(prox.horizontal[1] > DETECTION) then

turn right

elseif (prox.horizontal[3] > DETECTION) or

(prox.horizontal[4] > DETECTION) then

turn left

end

This means that if the center sensor and another one detect the mouse in the same sample,
the robot starts to pounce. Alternatively, if the center sensor were checked as the last
alternative in the if-statement, the robot would pounce only when the center sensor alone
detects the mouse. This is more precise but in the real world it might not occur.

Experiments

1. Experiment with “mice” of different sizes, colors and materials (metal, plastic).

2. Experiment with different combinations of sensors. In my program, both right and
both left sensors are checked to see if they detect the mouse. What happens if only
the rightmost and leftmost sensors are checked? What happens if the robot pounces
on the mouse when it is detected by the center sensor and one of the side sensors?

3. You may want to define different thresholds for different sensors.

4. Experiment with the speeds SCAN, TURN and POUNCE to see how they affect the ability
of the robot to detect and pounce on the mouse.

10

Chapter 3

How Fast is the Thymio?

There are three related projects in this chapter. The first project measures the speed of the
robot by measuring how long it takes the robot to move a fixed length. The second project
enhances the first one by enabling you to change the speed without making a change in
the program. The third project measures the acceleration of the robot.

3.1 Measuring the speed of the Thymio

Specification

Measure the speed of the Thymio robot.

System design

Construct a long, narrow rectangle of black tape on the floor and place the robot near the
left end of the rectangle facing right:1

�
�-

� -1 meter

6
?
∼ 10 cm

The distance between the right edge of the left tape and the left edge of the right tape
should be exactly one meter, while the distance between the top and bottom tapes should
be sufficient so that both ground sensors can detect the floor, but a relatively small turn
will cause the robot to detect the tapes.

When the forward button is touched, the robot moves slowly straight ahead until it de-
tects the left tape; it continues to move over the tape until it detects the right edge of the
left tape. At that point, it starts moving rapidly until it reaches the left edge of the right
tape, at which point it stops. If the robot detects the top or bottom tapes, it turns back to
a straight course.

1I am assuming that the floor has a light color. If the floor has a dark color, you should use white tape
and change the program accordingly.

11

When the robot detects the right edge of the left tape, it sets a time counter to zero. The
value of the time counter when the robot stops is used to compute the time that the robot
takes to travel one meter and thus its velocity.

Touching the center button when the robot is moving causes it to stop.

State machine

The program transitions sequentially through four states:

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�0=off 1=find 2=skip 3=straight- - -

?

• The transition from off to find occurs when the center button is touched.

• The transition from find to skip occurs when the left edge of the left tape is de-
tected.

• The transition from skip to straight occurs when the right edge of the left tape is
detected.

• The transition from straight to off occurs when the left edge of the right tape is
detected.

• Additionally, in all the states except off, touching the center button causes a tran-
sition to state off. (These transitions are not shown in the diagram above.)

The value of the current state is displayed by turning on a LED associated with a button:
0=front, 1=right, 2=rear, 3=left.

Constants

• THRESHOLD: The threshold below which a sensor detects that it is on a tape.

• MOTOR: The power setting of the motors.

• CHANGE: The percentage change in the motor power when turning.

Variables

• state: The current value of the state machine (0 .. 3).

• time: A counter of tenths of seconds.

12

Event handlers and subroutines

• Initialization: Initialize state to 0, set the LEDs accordingly, initialize timer0 to
occur every 100 milliseconds = 0.1 seconds, and turn the motors off.

• When the center-button event occurs: if the button is released, the subroutine stop

is called. It sets the state to 0 (off) and initializes the motors.

• When the timer0 event occurs: if the current state is 3 (straight), the variable time
is incremented.

• When a proximity event occurs, the subroutine called depends on the state:

– In state 1 (find) subroutine start found is called. If the start of the tape is
found (both ground sensors sense black—a value less than the threshold), the
motors are set to run at a reduced speed. The state is changed to 2 (skip).

– In state 2 (skip) subroutine end of start found is called. When both ground
sensors no longer sense black, this is the end of the start tape. The state is
changed to 3 (straight), the motors are set to run at the value MOTOR and the
variable time is initialized to 0.

– In state 3 (straight) subroutine drive straight is called. If both ground sen-
sors sense black, this is the finish line and stop is called. If only one sensor
senses black, the robot is turned to get it going straight again by increasing the
speed of one wheel and decreasing the other. If neither sensor senses black,
the robot continues straight.

Programming notes

Program file speed1.aesl

The initialization statements and those in the subroutine stop are almost the same, but
have to be repeated because the initialization cannot call a subroutine.

The constant CHANGE specifies the percentage by which the motor power setting MOTOR

should be increased or reduced to turn the robot. The percentage 25% is expressed in
mathematical calculation by the decimal number 0.25, but Aseba does not support deci-
mal numbers. If the value of CHANGE is 25, we cannot write CHANGE / 100, because divi-
sion in Aseba is integer division: 25/100 equals 0 with remainder 25.2 The solution is to
first perform a multiplication and then a division, so, for example, (300× 25)/100 = 75.
The Aseba statements to change the power setting are:

motor.left.target = MOTOR + (MOTOR * CHANGE)/100

motor.right.target = MOTOR - (MOTOR * CHANGE)/100

2You can obtain the remainder using the modulo operation in Aseba: CHANGE % 100.

13

The value of the variable time when the robot stops can be obtained
by looking in the table labeled Variables at the left of the Aseba Studio
window. When the robot stops, click refresh. Better, click the check
box auto and the display will be dynamically refreshed.

Use the top circle LEDs to display the value of the variable time. Since there are only
8 LEDs the display can only updated at long intervals, for example, every 4 seconds to
cover the range from 0 through 32 seconds. Remember that the variable time counts in
tenths of a second, so the subroutine set circle leds is:3

sub set_circle_leds

call leds.circle(

(time/ 40)*31, (time/ 80)*31, (time/120)*31, (time/160)*31,

(time/200)*31, (time/240)*31, (time/280)*31, (time/310)*31)

Measuring the speed

The robot was run five times, one for each setting of the constant MOTOR: 100, 200, 300,
400, 500. The value of the variable time was recorded for each run and divided by ten
since the variable records tenths of a second. Dividing 100 centimeters (= 1 meter) by the
time gives the (average) speed of the robot:

Power Time (sec) Speed (cm/sec)
100 30.5 3.3
200 15.5 6.5
300 10.5 9.5
400 7.8 12.8
500 6.5 15.6

Here is a graph of power (x-axis) vs. speed (y-axis):

331 is used instead of 32 to prevent the overflow of the intensity value.

14

The relation is linear! Linearity is a desirable property because you can easily change
the power to obtain any desired speed. If the relation were not linear, you would have
to adjust the power setting by including a table of power vs. speed in the program, as
described in Chapter 8.

3.2 Setting the power from the Thymio

Specification

It is difficult to measure the speed of the robot for different power settings because for
each one you have to change the program and reconnect the robot to the computer to load
the new program. Modify the program so that the power can be changed by pressing
buttons on the robot.

System design

The right and left buttons are used to increase and decrease the power setting in the
range 0 .. 500. The setting is displayed by turning on 0 .. 5 circle LEDs, given by the
power setting divided by 100.

Constants

• The constant MOTOR is no longer needed.

• INCREMENT is the amount by which the motor power is increased or decreased when
the right and left buttons are pressed.

Variables

• motor: The motor power setting.

• motor change: The change to the motor power setting.

Event handlers and subroutines

Two event handlers button.left and button.right are needed to detect when these
buttons are released.

The subroutine set circle leds lights the correct number of circle LEDs.

15

Programming notes

Program file speed2.aesl

All occurrences of the constant MOTOR must be replaced by the variable motor.

In order to avoid recomputing the expression (motor * CHANGE)/100 frequently, this
value is assigned to the variable motor change whenever the value of motor is changed.

motor_change = (motor * CHANGE)/100

The assignment of power setting to the power uses this value:

motor.right.target = motor - motor_change

motor.right.target = motor - motor_change

When increasing or decreasing the motor power, we have to be careful not to give values
that are outside the range 0 .. 500 that the motor accepts. To avoid saturation, the range is
checked when the left and right buttons are touched:

if motor < 0 then motor = 0 end

if motor > 500 then motor = 500 end

The subroutine set circle leds turns on 0 through 5 LEDS depending on the value of
motor:

sub set_circle_leds

call leds.circle(

(motor/100)*32, (motor/200)*32, (motor/300)*32,

(motor/400)*32,(motor/500)*32, 0,0,0)

for each value in the range 0 .. 5. Division in Aseba is integer division with truncation so
if the value of motor is 328, the result of the division is 3.

3.3 Measuring acceleration of the Thymio

Acceleration is the rate of change of the speed. For example, if the speed of the robot
starts at 0, becomes 5 cm/sec after 1 second, then 10 cm/sec after 2 seconds, and finally
15 cm/sec after 3 seconds, the acceleration is 5 cm/sec per second, written 5 cm/sec2.

16

Specification

Measure the acceleration of the robot as the power setting is changed.

System design

The robot moves to the end of the start tape and stops.

The timer event timer1 is set to occur every t seconds. When it occurs, the power of the
robot is increased by 100. Therefore, the robot runs at each power setting 100, 200, 300,
400, 500 for t seconds. When it has run at power 500 for t seconds, the robot stops. The
measurements are explained below.

Constants

• MOTOR: The initial power setting of the motors.

• ACCEL: The time between occurrences of the event timer1.

Event handlers and subroutines

• Subroutine end of start found is modified to set motor to 0 and stop the robot.

• Subroutine drive straight is modified to remove the condition of stopping when
the end tape is reached.

• When the timer1 event occurs and the state is 3 (straight):

– If motor is less than 500, increase the value of motor by 100.

– If motor is equal to 500, call subroutine stop.

Programming notes

Program file speed3.aesl

• The counter time should be initialized to 0 in the handler for the timer1 event when
motor is 0. This will be more accurate since the robot starts to move when this event
handler is run and not when the robot reaches the end of the start tape.

• Initialization of motor to MOTOR should occur when the center button event occurs
so that you can run the program multiple times without reloading.

17

Measuring the acceleration

Set the value of timer1 successively to three values (500 ms = 0.5 second, 1000 ms = 1
second, 2000 ms = 2 seconds) and run the program. Use a tape measure to measure the
distance that the robot moves and note the time as recorded in the counter time.

A body that accelerates from rest travels a distance s = 1
2 at2, where a is the acceleration.

Therefore, we can calculate the (average) acceleration as a = 2s/t2.

For the values of the timer 0.5, 1, 2 seconds, I measured that the robot traveled 25, 50,
100 centimeters in 2.5, 5, 10 seconds, respectively. The accelerations are 8, 4, 2 cm/sec2,
showing that the faster you “press the gas pedal down to the floor,” the faster the robot
accelerates, and that the acceleration is inversely proportional to the time it takes to press
the pedal to the floor.

Experiments

1. Experiment to see how consistent the measurements are. Perform the speed mea-
surement at the five power settings several times.

2. How sensitive is the speed measurement to the experimental setup. What result do
you get if you measure the speed over a 2-meter course. Try making the top and
bottom tapes closer together or farther apart and see if that affects the results.

3. Experiment with the effect of friction on the speed of the robot. Measure the speed
on a bare tile or concrete floor, on a wooden desk, on a sheet of plastic, and outside
on the ground.

4. Making corrections to keep the robot within the rectangular frame can cause in-
accuracy in the measurement of the speed. Instead, you can calibrate the motors
so that the robot runs straight and then measure the speed from on small strip of
tape to another place one meter away. Make small adjustments in the powers of the
left and right motors until the robot runs straight. Alternatively, use the calibration
procedure in the Thymio robot as explained here.

5. Modify the third program so that the acceleration is smooth.

6. Experiment with deceleration where you start the robot at a power setting of 500 and
slowly reduce the power.

18

https://www.thymio.org/en:thymiomotorcalibration

Chapter 4

Line Following

Specification

Write a program that causes the robot to follow a line on the floor.

System design

If the floor is light-colored, the ground proximity sensors will detect a lot of reflected
light, so we need a dark line that will reflect very little light. This is easy to do by placing
black electrician’s tape on the floor:

The tape must be wide enough (at least 4 cm) so that both ground sensors will sense black
when the robot is successfully following the tape.1 When the robot strays off the line, the
direction of the turn can be determined by which sensor measures a low level of light
(over the tape) and which measures a high level of light (over the floor):

1You can download and print out two closed black-on-white lines from:
https://aseba.wikidot.com/en:thymiobehaviourinvestigator.
If your floor is dark-colored, use white tape and modify the program accordingly.

19

https://aseba.wikidot.com/en:thymiobehaviourinvestigator

�
�
�
�
�

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�

Floor

Tape

Floor
�
��

Once we know this direction we can turn the robot back onto the tape by increasing the
power of one motor and decreasing the power of the other motor. In the drawing above,
to cause the robot to turn right back onto the tape, we cause the left motor to run forward
at high power and the right motor to run forward at low power, or even backwards to
achieve a tighter turn.

The difficult part of a program for line following is handling the case when both sensors
no longer detect the line. The solution is to remember the direction the robot was going
when the first sensor detects the floor. However, the sampling rate of the proximity
sensors (10 times a second) is not fast enough to do this if the robot is traveling at a high
speed. Therefore, a timer event is added and set to occur more often, say, 50 times a
second (every 20 milliseconds). When the event occurs, the computation of the direction
is performed as explained below.

The direction of the turn is indicated by different colors of the top LEDs.

State machine

There are two states: 0 for off and 1 for on.

Constants

• THRESHOLD: The threshold below which a sensor decides that it is on a tape.

• DIFF: The difference in sensor values above which the direction is remembered.

• CHANGE: The percentage change in the motor power when turning.

• TIMER: The period of the timer that computes the last direction.

• INCREMENT is the amount by which the motor power is increased or decreased when
the right and left buttons are pressed.

20

Variables

• state: The state: off = 0 or on = 1.

• motor: The motor power setting.

• motor change: The change to the motor power setting.

• diff: The difference between the values of the left and right ground sensors.

• dir: The direction the robot was turning when it left the tape (1 = right, −1 = left).

Event handlers and subroutines

• Setting the motor power: the handlers for the events button.left and button.right

and the subroutine set circle leds were described in Chapter 3.

• When the center-button event occurs: if the button is released, the state and the
motors are changed from on to off and from off to on.

• When a proximity event occurs, the subroutine drive is called.

– If both sensors detect the tape, the robot drives straight.

– If only one of the sensors detects the tape, the robot turns in the correct direc-
tion to return to the tape.

– If neither sensor detects the tape, the robot turns in the direction indicated by
the variable dir.

• When the timer0 event occurs: The range of values of the ground sensors is very
large—between 0 and 1023—so the two sensors will almost certainly measure slightly
different values even if both are above the tape or above the floor. Therefore, the
direction is computed only if the absolute value of the difference between the mea-
sured values is significant—above a threshold determined by the constant DIFF. If
so, the variable dir is set to 1 if the value of the left sensor is greater than that of the
right sensor and, if not, it is set to −1.

21

Programming notes

The operator for absolute value is defined in AESL. The outline of the timer0 event is:

onevent timer0

diff = prox.ground.delta[0] - prox.ground.delta[1]

if abs diff >= DIFF then

if diff > 0 then dir = 1 else dir = -1 end

end

Program file line.aesl

Experiments

1. What is the maximum speed at which the robot can reliably following the line?
(Here, reliably means that the robot can successfully follow the line if you run the
program several times.) The faster the robot, the more likely it is that the robot will
lose the line and not be able to return to it.

2. Experiment with the power setting of the turns. My program sets one motor to
move forward and one to move backwards. This turns the robot rapidly in the
correct direction but slows it down. A gentle turn may or may not be better.

3. What is the largest angle that the robot can follow? Can it follow a tape that has a
full (90◦) left or right turn?

4. Modify the program so that instead of using a single value for the detection thresh-
old, there are separate thresholds tw and tb such that the robot is considered to be
on the tape if the sensor value is less than tb and off the tape if the sensor value is
greater than tw.2

5. Modify the program so that the robot calibrates the sensors—determines the detec-
tion thresholds—by itself. Place the robot with both sensors over the tape and press
a button; the program will calculate tb. Now place the robot with both sensors over
the floor and press another button; the program will calculate tw.

2This experiment and the following one are based on the line-following program from:
https://aseba.wikidot.com/en:thymiobehaviourinvestigator.

22

https://aseba.wikidot.com/en:thymiobehaviourinvestigator

Chapter 5

Composing Music On-the-Fly

The Thymio contains accelerometers that measure the acceleration of the robot on each
of the three axes: left-right, front-back and top-down. When the robot is at rest, the
acceleration of the left-right and front-back axes will be zero, but the accelerometer for the
top-down axis will measure a positive acceleration corresponding to the earth’s gravity.
The accelerometers are used to detect shocks (like the tap event) and they can be used to
detect the orientation of the robot relative to the ground. The project in this chapter uses
movement of the robot to compose music.

Specification

Hold the Thymio in your hand and move it quickly left and right. The program will
sample the left-right acceleration and store the samples. When enough samples have
been taken, their values will be used to play music using the sound synthesizer.

State machine

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�0=off 1=sample 2=stop 3=play- - -

?

The initial state is off. When the center button is touched, the transition to sample is
taken and the robot begins to sample the accelerations. The samples are stored in a data
structure; when it is full, the transition to stop is taken. Touching the center button again
causes a transition to play and the sounds to be played. When all the sounds have been
played (or the center button is touched again), the transition to state off is taken.

Constants

• SIZE: The number of samples of the acceleration.

• PERIOD: The number of milliseconds between samples.

23

• BASE: The base frequency for sound.

• FACTOR: The factor for changing the frequency of each sound.

• DURATION: The duration of each sound.

Variables

• save: An array of length SIZE for saving the samples.

• index: An array index variable.

• state: The state.

Event handlers and subroutines1

• Event button.center: When the center button is released, the state transitions de-
scribed above are performed. During the transition from state stop to state play

a short sound is played so that the event sound.finished will occur. During the
transition from state play to state off, sound.freq is called with a duration of −1
to stop the sound. In all cases, the variable index is set to 0.

• Event timer1: When the timer expires in state sample, the value of acc[0] is stored
in save and index is incremented. When the array is full, the state is set to stop.

• Event sound.finished: When a sound is finished, initiate the next sound by calling
sound.freq. When all sounds have been played, go to state off.

Programming notes

Program file music1.aesl

• To initialize the array elements to zero, use the native function math.fill.

• Initialize the timer to PERIOD.

• The values of the acceleration are between−32 and 32, so multiply them by FACTOR

and add to BASE to obtain an audible note (several hundred hertz):

call sound.freq(BASE+save[index]*FACTOR, DURATION)

The units of DURATION are 1
60 ths of a second.

1Before continuing, review sections Accelerometer and Synthetic sound of the Programming Interface at
https://aseba.wikidot.com/en:thymioapi.

24

https://aseba.wikidot.com/en:thymioapi

Experiments

• Experiment with the values of the constants. Make sure that the note played—the
first parameter to sound.freq—doesn’t go below or above a sound you can hear.

• Set the LEDs on the top of the robot to reflect its current state.

Program file music2.aesl

• The sounds obtained are not “real” notes but just sounds of different frequencies.
Modify the program so that only real notes are played. Define an array of frequen-
cies: the frequencies from middle C to high C, rounded to integers, are:

var notes[8] = [261, 294, 330, 349, 392, 440, 494, 523]

Use the values in save to compute an index to notes to select a frequency for call
sound.freq(notes[...], DURATION). Use the modulo operator % 8 to ensure that
the index is in the range 0–7.

Program file music3.aesl

• In addition to the left-right acceleration, save the forward-back acceleration in an-
other array. Use the left-right values to compute the note and the forward-back
values to compute the duration. Explain what happens if you use top-bottom ac-
celeration instead.

Program file music4.aesl

• Instead of calling leds.top whenever the state is changed, write an event handler
that checks the current value of state and sets the LEDs accordingly. Since the
prox event is not otherwise used in this project and occurs frequently (10 times a
second), it is convenient to use it for this purpose.

Program file music5.aesl

• By default, one circle LED is lit at the lowest point of the robot. Modify this so that
two circle LEDs are lit: left or right and front or back to show the directions of the
accelerations in these axes.

Program file music6.aesl

25

Chapter 6

Odometry

Suppose that you are in a car and your GPS navigation system instructs you: “In 700 me-
ters turn right.” You no longer need the system to choose the correct turn. Simply check
the car’s odometer which measures how far you have traveled and when it approaches
700 meters beyond its initial reading, look for a road on the right. Odometry—the mea-
surement of distance—is a fundamental method used by robots for navigation. However,
even with a relatively accurate odometer, you will want to look carefully for an intersec-
tion, because you don’t want to turn even two or three meters too early or too late.

Odometers measure time and speed, and then compute distance traveled by multiplying
them. In this chapter we demonstrate odometry with the Thymio robot.

Feel free to make the programs more exciting by including lights and sounds.

Specification

The Thymio robot travels straight at a constant speed for a fixed period of time. Compute
how far it has traveled and compare the computed distance with the actual distance.

Design

The motor power is set by assigning values to motor.X.target (where X is left or
right). The internal computer of the robot tries to maintain this power level, but it is
possible to measure the actual power level by reading the values of motor.left.speed
and motor.right.speed. In theory, once we set the motor power, it will remain constant,
but in practice it changes frequently, so we will sample the actual power level at fre-
quent intervals. The distance traveled during each interval will be computed and these
distances will be added to obtain the total distance traveled by the robot.

The values returned by motor.X.speed are in the range 0–500 and have to be converted
into speeds measured in centimeters per second. Implement the project in Chapter 3 to
compute the relationship between power levels and speed of your Thymio.

From the table on page 14, I determined that my Thymio travels over the floor at about
Power

100 × 3.2 cm/sec. Multiply this by the duration of the sampling interval in seconds to
obtain the distance that the robot has traveled during that interval. For example, if the

26

value in motor.X.speed is 350 and the interval is 0.5 seconds, the distance traveled is
350
100 × 3.2× 0.5 = 5.6 cm.

Constants

• MOTOR: The motor target speed

• DELTA: The time between samples

• COUNT: The number of samples

• SPEED: The speed of robot per 100 power setting

Programming

Program file odo1.aesl

• The actual motor speeds should be measured starting from the second occurrence of
the timer event so that the robot has time to achieve its target speed.

• Sample the speed of either the left or the right motor on the assumption that they
are roughly the same. Alternatively, sample both speeds and take their average.

• The distance traveled during an interval is ∆d = p
100 × s× ∆t, where p is the sam-

pled speed (power), s is the power-to-speed conversion factor and ∆t is the time
length of the interval.

Since real numbers are not supported, s = 3.2 cm/sec and t = 500 msec = 0.5 sec
are scaled by multiplying by ten: s′ = 32 mm/sec and t′ = 5 sec. The distance is
then divided twice by ten. To preserve the precision of ∆d, the division should be
done on the total distance obtained by summing each ∆d.

• Use the native function for 32-bit computation (see Section 10.2):

call math.muldiv(deltaD, p, s’*t’, 100)

Running the program

• Run the program several times, measure the distances traveled by the Thymio, and
compare them with the computed distances. How accurate is the odometry com-
putation? How consistent are the measured and computed distances?

27

• Does the robot travel straight? If it turns to one side, you might want to add or
subtract a value from the constant MOTOR when assigning it as the target speed to
one of the motors.

• Place an object at a known distance in front of the Thymio. Modify the program so
that when the odometry computation determines that the robot is near the object,
it detects the object using the horizontal sensors and then moves slowly until the
robot touches the object.

Experiments

Program file odo2.aesl

The motors are set to run at a constant speed, so we would probably get reasonably
accurate measurements of the distance by taking a single sample. Modify the program
so that the robot randomly changes the target speeds of the motors in each interval after
the speed is sampled.

The native function math.rand returns a random number in the range −32768..32767.
Before using this value as a target speed you will have to perform a computation to
ensure that the value is in the range of the motor power values 0..500.

28

Chapter 7

Image Recognition

A robot must be able to look at its environment in order to locate and identify the targets
of its actions or objects that may be in its way. Image recognition normally requires a
camera; this project will use the proximity sensors.

Consider a robot in a warehouse where all objects are identified by barcodes. Let us see
how a robot could search for a specific object in an aisle with many objects.

Specification

The Thymio moves straight and at frequent intervals turns left to identify to object on a
shelf. After sampling the objects, it turns back right and then continues straight. When
the robot locates the object, it emits a signal.

Design

Program file barcode.aesl

Take a piece of wood about the height of the robot and about 50 cm long. Cover it with
black tape so the wooden background will not be detected by the sensors. The objects are
represented by strips of aluminum foil fastened over the black tape. Narrow strips are
objects we don’t want and the wide strip is the object we want.

The robot computes the sum of the values returned by the five horizontal sensors. When
this value is above a threshold, the robot detects the wide strip and the top LEDs are
turned on. All the sums of the samples are stored in an array so that they can be examined
after the robot stops.

29

State machine

The program transitions sequentially through four states:

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�0=off 1=straight 2=left 3=right- - -

?

• The transition from off to straight occurs when the forward button is touched.

• The transition from straight to left occurs when TIME STRAIGHT has passed.

• The transition from left to right occurs when TIME LEFT has passed.

• The transition from right to straight occurs when TIME RIGHT has passed.

• In addition to the transitions shown in the diagram, touching the center button
causes a transition to state off, as does detecting the end of the table.

Constants

• MOTOR: The power of the motors.

• THRESHOLD: The threshold for detection of the wide aluminum strip.

• TIME STRAIGHT, TIME LEFT, TIME RIGHT: Values for the timer to control the search
and the turns. Turning left and right should take the same amount of time, but
inconsistencies may require the use of slightly different times.

Variables

• state: The current state.

• samples: An array to store the sums of the samples.

• i: Index for sampling all the sensors.

• j: Index for the array samples.

30

Event handlers and subroutines

The events handlers for touching the center and forward buttons and for detecting the
edge of the table are straightforward. Most of the computation is done in the handler
for timer0. It contains an if-statement with four alternatives, one for each state. Each
alternative changes the motor power as required and sets the timer for the next state.

Before turning right in state 2, the sensors are sampled. If the sum is greater than THRESHOLD,
the top LEDs are turned on.

Running the program

It is quite difficult to get this program to run correctly, because turning left and then right
may not return the robot to exactly the same heading. If the table surface if not perfectly
smooth, these deviation can change as the robot moves along the piece of wood.

Experiments

1. Experiment with the speed of the robot. How fast can you get it to search for the
object and still identify it.

2. See if the program can identify multiple objects (wide strips).

3. Measure how far the robot moves for each sample. Modify the program to count
the number of samples until it finds the object and then to compute to distance from
the starting point to the object.

4. Experiment with the time between samples (TIME STRAIGHT). More frequent sam-
ples will cause the robot to take a longer time to locate the object; however, it will
locate its position with greater accuracy.

5. The accuracy of the search can be improved by placing a tape on the surface and
using a line-following program (Chapter 4). This will not only ensure that the robot
travels straight, but it will make it easy to determine when the right turn has moved
to robot back to its initial heading.

31

Project

Develop a program that reads a barcode consisting of three strips of tape placed on a
table. The strips are detected by the ground sensors and interpreted as encodings of RGB
colors. When the strips have been decoded, the top LEDS will display that color.

Program file color-code.aesl

Guidance:

Place three strips of tape of varying widths on a table.

�
�-

w1 w2 w3

Define two constants MOTOR SPEED and THRESHOLD. The first is the power setting for both
the left and right motors, and the second is the value of the ground sensors below which
the black tape is detected. (Should you use the value of the left ground sensor, the right
one or some combination of the two?)

The Thymio travels across the strips of tape. When it detects a black tape during a prox

event, it zeros a counter. The counter is incremented during each subsequent prox event
until the black tape is no longer detected. The counter is then stored in an array. When
three strips have been detected, the three values stored in the array are used to compute
the values of the red, green and blue components and leds.top is set accordingly. The
higher the value of the counter (that is, the more events that occurred while moving over
a strip), the wider the strip and the higher the value of the color component.

You will have to experiment with the parameters of this project to get it to work prop-
erly: the width of the strips of tape, the constants MOTOR SPEED and THRESHOLD, and the
mapping between counter values and the values of the color components.

Run the program with different arrangements of the strips of tape in order to display
different colors.

32

Part II

Advanced Concepts in Robotics

33

Chapter 8

Nonlinearity

In Chapter 3 we measured the speed of the Thymio robot for various settings of the motor
power and found that the speed v was a linear function v ≈ 0.03p of the power p. For
example, a power setting of 300 gave a speed of about 9 cm/sec. In this chapter we will
look at the values returned by the horizontal proximity sensors and ask: Are the values
a linear function of the distance to an object?

8.1 Measuring the horizontal proximity sensors

Specification

Construct a graph showing the values returned by the center horizontal sensor for an
object placed at 1 cm intervals in front of the robot.

System design

Tape a ruler on your table and carefully place the robot so that its front is at the 0 mark
of the ruler. Place an object exactly at the 1 cm mark on the ruler and touch the center
button. Store the value of the center proximity sensor. Repeat for 2 cm, 3 cm, . . . , until
the value goes to zero.

The value returned by the sensor depends not only on the distance of the object but also
on how precisely it is centered in front of the object. For each distance, move the object
slightly left and right until the value is as large as possible.1 You can read the value of the
sensor in the Variables pane at the left of the Aseba Studio window; click the check box
auto so that the display will be dynamically refreshed.

Variables

• proximity: An array for storing the values read from the sensor. Eight elements
should be sufficient: by experiment, I found that the sensor is unlikely to detect an

1The values change all the time so you won’t be able to get the true maximum.

34

object further than 8 cm away. Initialize each element of the array to zero so that
you can determine which values have been entered from a new run of the program.

• count: An index for the array.

Event handlers and subroutines

When the center button is released, the current value of the center horizontal sensor is
stored in the first unused element of the array promixity.

Programming notes

Program file nonlinear1.aesl

Aseba can determine the size of an array from the number of elements in an initial value.

var proximity[] = [0,0,0,0,0,0,0,0]

Running the program

Run the program and touch the center button for each position of the object. The values
in the array proximity will be displayed in the Variables pane. Construct a graph with
distance on the x-axis and the sensor values on the y-axis. Better, run the program several
times and use the average values of the sensors for each distance.

Figure 8.1 shows the results of two runs and their average. The function is reasonably
linear in the range 3–5 cm, but nonlinear outside that range.

Exporting the values of the variables

It is not necessary to copy the values by hand from the Variables pane. After running the
program, select Files/Export memory content and enter a file name such as data.txt.
If you open the file in an editor, you will see the values of each variable, for example:

thymio-II.proximity 1333 2278 2865 3338 3710 4092 4274 4349

You can use spreadsheet software to compute with these value or to draw a graph. Here
are the instructions for Microsoft Excel:

• Select File/Open from the menu and write in the name of your file.2 Click Open.

2The file will not be displayed unless you select All Files in the list next to the File name field.

35

Figure 8.1: Sensor value for distances 1–7 cm

• Select Delimited and click Next.

• Select Space and click Next.

• Click Finish.

To draw a graph, select the values in the line labeled thymio-II.proximity, click Insert/Line

and choose a style.

Experiments

1. Modify the program so that it stores the results of three sequences of measurements
and computes the average.

2. Do the values measured by sensor depend on the object? Experiment with objects
of different shapes and materials.

3. Modify the program so that it records the values of the other four horizontal sen-
sors. Do the different sensors return similar values?

8.2 Calibrating the horizontal proximity sensors

Nonlinear sensors can be used if they are calibrated. The results of an experimental mea-
surement (as described in the previous section) can be used to translate the raw sensor
data into actual distances.

36

Specification

When an object is placed in front of the center horizontal sensor and the center button
touched, the circle LEDs on the top of the robot display the distance from the robot.

System design

An array stores the values measured for each distance. When the button is released, the
value of the sensor is compared with the elements of the array. The first index at which
the element of the array is lower than the measured value is taken to be the distance, and
that number of LEDs are turned on. For example, let the values in the array be:

var proximity[] = [4100, 4045, 3650, 2705, 1850, 1245, 965, -1]

If the sensor measures a value of 3000, then proximity[3] (2705) is less than 3000, so the
loop stops with the value 3 in distance. If the sensor measures 2000, the distance is 4 cm.

Variables

• proximity: The array stores the values of the sensors previously measured.

• distance: The array index; its final value is the distance to the object.

Event handlers and subroutines

• When the center button is released, a loop searches the array proximity comparing
the values with the value measured by the sensor.

• set circle leds: Light the number of LEDs given by the variable distance; it is
similar to the subroutine in Chapter 3 that displayed the motor setting.

Programming notes

Program file nonlinear2.aesl

We used a well-known programming trick called searching an array with a sentinel. The
last element of the array is given the value −1, which is less than 0, the smallest possible
value of the sensor. This ensures that the loop will always terminate.

37

Running the program

When I ran the program, the results were accurate for distances in the range 1–5, but less
accurate for larger distances.

Experiments

1. The transition between n cm and n + 1 cm is taken when the object is bit over n cm
from the robot. Modify the program so that the transition is taken halfway between
the two distances.

2. Modify the program so that it can measure distances of half a centimeter. One so-
lution is to extend the calibration to sample values for every one-half centimeter.
Alternatively, you could try interpolation, where the transition value for a half cen-
timeter distance are taken as the average of the two neighboring values.

38

Chapter 9

Odometry in Two Dimensions

In the previous chapter, the distance traveled in one dimension was measured. For a
robot like the Thymio that can turn, we want to track its position in the plane in two
dimensions x and y, as well as its heading, the direction in which the robot is pointing.

This chapter presents the basic concepts of odometry for a turning robot. Since Aseba
only supports 16-bit integer computation, while the trigonometric computations that are
needed are usually done with real numbers, scaling factors must be used and it will be
rather difficult to keep track of them.

Specification

The Thymio robot moves a short distance with the right wheel moving faster than the
left wheel. Compute the new position and heading of the robot.

Design

Consider a robot that moves a short distance at an angle:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

θ

dl dc dr

y y
baseline -�

The square indicates the center of the robot and the circles indicate the left and right
wheels. The distance between them is baseline and dl , dr, dc represent the distances moved
by the two wheels and the center of the robot.

39

The circumference of a circle of radius r is given by 2πr and in general the length of an
arc of angle θ (in radians)1 is given by θr. Therefore, we have:

θ = dl/rl = dr/rr = dc/rc,

where rl , rr, rc are the distances of the wheels and the center from the origin of the turn.

The angle θ can be computed from the distances traveled and the baseline:

rr · θ = dr,

rl · θ = dl ,

rr · θ − rl · θ = dr − dl ,

θ = (dr − dl)/(rr − rl),

θ = (dr − dl)/baseline.

We assume that the center of the robot is halfway between its wheels, so rc = (rl + rr)/2,
and therefore rc = dc/θ = (dl/θ + dr/θ)/2; multiplying by θ gives dc = (dl + dr)/2.

If the distance moved is small, the line labeled dc is approximately perpendicular to the
radius through the final position of the robot:

��
��
��
��
��
��
��
��
��
��
�

θ

dc

θ

θ
dx

dy

�change in
heading

By similar triangles, we see that θ is the change in heading of the robot.

By trigonometry, we have that:

dx = −dc · sin θ,

dy = dc · cos θ.

These formulas show how to compute the changes dx, dy and θ when the robot moves a
short distance. To implement odometry, the changes are computed at frequent intervals
and the actual position and heading are updated with these changes. For simplicity and
given the limitations of the measurements of dl and dr, we will implement the computa-
tion of a single change over a relatively long period of time.

1A radian is a unit used to measure angles. A circle of 360◦ is defined to be 2π ≈ 6.28 radians. It follows
that 180◦ = π radians, 90◦ = π/2 radians and so on.

40

Constants

• TIME: Duration of the run (30 tenths of a second)

• BASELINE: The distance between the left and right wheels (95 mm)

• LEFT: Power setting of left wheel (200)

• RIGHT: Power setting of right wheel (300)

• SPEED: The speed of robot per 100 power setting (32 mm/sec)

Programming

Program file odo3.aesl

It would be easy if we could ask for a single timer event to occur after three seconds, but
the Thymio timers cause an event to occur immediately when the program runs. There-
fore, the timer is set to expire every tenth of a second and the odometry computation is
done when 30 timer events have occurred.

The distances traveled by the two wheels are computed from the power settings:

call math.muldiv(dleft, motor.left.speed, SPEED*TIME, 100*10*10)

call math.muldiv(dright, motor.right.speed, SPEED*TIME, 100*10*10)

dcenter = (dleft+dright)/2

The result is divided by a factor of 100 for the motor powers, 10 for the power to speed
conversion (3.2 cm/sec) and again by 10 because the time is tenths of a second.

The change of heading is computed from the distances traveled by the two wheels and
the baseline:

theta = ((dright-dleft)*10*100)/BASELINE

The factor 10 cancels out the factor of 10 in the baseline that is given in millimeters. The
factor 100 gives the result in hundreths of radians, transforming the real range 0–3.14 to
the integer range 0–314. (For simplicity we consider only positive angles.)

The sine and cosine are computed:

call math.cos(tcos, theta*100)

call math.sin(tsin, theta*100)

In Aseba, the parameter to the trigonometric functions is within the entire 16-bit range
-32768–32767, which represents the range from −π to π radians. Multiplying the angle

41

by 100 will cause the range of positive angles 0–314 to become 0–31400, approximately
the range of the positive angles as 16-bit integers.

We can now compute the change in the x- and y-positions:

call math.muldiv(dx, dcenter, -tsin, 32767)

call math.muldiv(dy, dcenter, tcos, 32767)

The result is divided by 32767 because the result of the trigonometric functions in Aseba
is within the entire 16-bit range -32768–32767, instead of the normal range of real numbers
−1.0–1.0.

Running the program

Running the program gave the following results which are reasonable:

dleft 20
dright 29
dcenter 24
theta .94
dx -18
dy 15

The units are centimeters except for θ which is in radians (.94 radians ≈ 54◦).

Running the program several times gives different results because the values returned by
motor.X.speed are not consistent.

Experiments

• Run the program for different periods of time. How does this affect the accuracy
and consistency of the odometry computation?

• The Thymio robot has a hole that can be used to hold a marker. Mark the actual path
of the robot and measure dc. Can you use this to compute dl and dr? If so, perform
the odometry computation with these values. Is the computation more accurate
and consistent than the computation using the measurements of motor.X.speed?

42

Chapter 10

Control

All our projects contain an algorithm that decides what to do. The proximity sensors
measure a value and if it is above or below a threshold, the program decides (using an
if-statement) whether to start or stop the robot, or to turn it in one direction or another.
These algorithms are called control algorithms and there is a sophisticated mathematical
theory of control that is fundamental in robotics. In this chapter, we develop several
projects that demonstrate various control algorithms.

The projects concern searching for and approaching an object, as was done in the cat-
catches-mouse project in Chapter 2. We simplify the projects in order to the focus on the
control algorithms. The presentation of the projects will be more informal than in pre-
vious chapters on the assumption that you now have enough experience to design state
machines, declare constants and variables, and write event handlers and subroutines.

I built an object from a lipstick container wrapped in aluminum foil. The object must be
narrow so that an individual horizontal sensor will be able to locate it accurately.

Before you proceed with the projects, experiment to find out the range of values returned
by the horizontal sensors as the object gets closer. Recall that you can examine the values
in the Variables pane of Aseba after checking the box labeled auto. Define a constant
THRESHOLD to be close to the highest value. I found that the values ranged between 0 and
4100 or a bit more, so I defined THRESHOLD as 4000.

43

The first part of the chapter described two projects for searching for the object, one using
a simple on-off controller and the other using a proportional controller. The second part
describes three projects for approaching the object, using an on-off and a proportional
controller, as well as a more sophisticated proportional-integral controller.

Tip: You can follow the changes in the motor power by examining the
variables table as described on page 14. A better way is to program the
circle LEDs to display the motor power as described on page 16.

10.1 Searching

An on-off controller

Specification: When the leftmost horizontal sensor of the Thymio detects the object, it
turns rapidly to the right until the rightmost sensor detects the object and then stops.1

Program file scan-on-off.aesl

The first control algorithm is very simple. When the value of the leftmost sensor is greater
than the threshold turn the motors on to their highest positive and negative values (500
and−500). When the value of the rightmost sensor is greater than the threshold, turn the
motors off:

onevent prox

if prox.horizontal[0] > THRESHOLD then

motor.left.target = -MOTOR

motor.right.target = MOTOR

elseif prox.horizontal[4] > THRESHOLD then

motor.left.target = 0

motor.right.target = 0

end

This is called the on-off algorithm, because the motors are either on at full power or off.2

Run the program. What happens? When I ran the program, the robot stopped with the
object past the rightmost sensor. When the robot is moving at full speed, the rate at which
the prox event occurs is simply not fast enough to stop the robot in time. As you know
from riding in a car, starting and stopping as fast as possible is very uncomfortable. Fast
acceleration and braking is also bad for the engine and brakes. For these reasons, the
on-off algorithm is not used in practice.

1In all the projects, the touching the center button starts and stops the program and motors.
2Another, colorful, name is the bang-bang algorithm!

44

A proportional controller

To develop an algorithm that is better than the on-off algorithm, we take inspiration from
riding a bicycle. Suppose that you are riding your bicycle and see that the traffic light
ahead has turned red. You don’t wait until the last moment and then squeeze hard on
the brake lever; if you did so, you might be thrown from the bicycle! What you do is to
slow your speed gradually: First, you stop pedaling; then, you squeeze the brake gently
to slow down a bit more; finally, when you are at the light and going slowly, you squeeze
harder to fully stop the bicycle.

The algorithm used by a bicycle rider can be expressed as: to stop gradually, reduce your
speed more as you get closer to the object. The decrease in speed is proportional to how
close you are to the light: the closer you are, the more you slow down.

Program file scan-p.aesl

To implement a proportional algorithm we have to measure how close the object is from
rightmost sensor. The language of the following description might seem strange but the
intent should be clear:

When detected by the leftmost sensor, the object is 0 units close;
When detected by the next sensor to the right, it is 1 unit close;
When detected by the center sensor, it is 2 units close;
When detected by the next sensor to the right, it is 3 units close;
When detected by the rightmost sensor, the robot is at the object.

The algorithm reduces the motor power setting in proportion to the number of units that
are measured. Define a constant DELTA for the amount by which the power is reduced
for each unit. When the object is detected by the n’th sensor (n = 0 .. 3), the power is
reduced by n times DELTA. When the 4th sensor detects the object, the robot stops. The
event handler is shown in Figure 10.1.

Run the program, experimenting with the values for DELTA, so that the robot starts turn-
ing very fast but then gently slows down, just as if you were applying more and more
pressure to the brake lever on the bicycle. The robot should stop with the rightmost
sensor precisely opposite the object.

Programming note: Why are the sensors checked in the order 4, 3, 2, 1, 0 and not in the
order 0, 1, 2, 3, 4? The answer is in the footnote, but think about it before you look.3

3If the object is detected by two sensors at the same time, the lower power setting of the sensor closer to
the rightmost sensor should be used. This way the slowing down of the robot is smoother. Experiment with
the other order and see what happens.

45

onevent prox

if prox.horizontal[4] > THRESHOLD then

motor.left.target = 0

motor.right.target = 0

elseif prox.horizontal[3] > THRESHOLD then

motor.left.target = -MOTOR + DELTA * 3

motor.right.target = MOTOR - DELTA * 3

elseif prox.horizontal[2] > THRESHOLD then

motor.left.target = -MOTOR + DELTA * 2

motor.right.target = MOTOR - DELTA * 2

elseif prox.horizontal[1] > THRESHOLD then

motor.left.target = -MOTOR + DELTA * 1

motor.right.target = MOTOR - DELTA * 1

elseif prox.horizontal[0] > THRESHOLD then

motor.left.target = -MOTOR + DELTA * 0

motor.right.target = MOTOR - DELTA * 0

end

Figure 10.1: Searching with a proportional algorithm

10.2 Approaching

In this section we develop algorithms for slowing down and stopping the robot. It is
similar to the pounce behavior of the cat-catches-mouse project in Chapter 2. The propor-
tional algorithm in the previous section used a rather arbitrary measure of closeness: the
number of sensors between the current position of the object and the rightmost sensor.
In this section, the power setting of the motors will be proportional to a measure of the
distance between the sensor and the object.

Specification: The object is placed in front of the center horizontal sensor. The robot
moves towards the object and stops just before hitting it.

Previously, you were asked to determine the upper limit of the value of the horizontal
sensor when it detected the object. For the projects in this section, a value close to the
upper limit is given by the constant TARGET. Instead of checking if the value of the sensor
is above a threshold, we compute the error defined as:

error = target distance−measured distance

The robot stops when the error is below a value given by the constant TARGET ERROR.

46

An on-off controller

Program file approach-on-off.aesl

Here is the event handler for an on-off controller. It turns the motors off when the error
is small, but leaves them at full power when the error is large:

onevent prox

error = abs (TARGET - prox.horizontal[2])

if error < TARGET_ERROR then

callsub stop

else

motor.left.target = MOTOR

motor.right.target = MOTOR

end

Programming note: The absolute value is used because the value of the sensor can be
slightly higher than TARGET so the error can be negative. What problem can this cause?
The answer is in the footnote, but think about it before you look.4

When I ran this program the robot moved so fast that it collided with the object!

A proportional controller

Program file approach-p.aesl

In a proportional controller the motor power is proportional to the error: The larger the
error—the farther the robot is from the object—the higher the power; as the robot ap-
proaches the object, the error becomes small and the power is reduced. The power is
determined by multiplying the error by a number called the gain for which we define a
constant GAIN P. Be careful to avoid saturation: the power must never be higher than the
highest allowed value, which is 500 for the Thymio robot:

motor_power = error * GAIN_P

if motor_power > 500 then motor_power = 500 end

Experiment to find a value for the gain that gives good results. I was able to get the robot
to stop just before hitting the object.

Programming note: The variable error has values in the range from 0 to about 4000,
while we want the motor power to have values in the range 0 to 500. Therefore, the gain

4If the value of the sensor is large, the absolute value of the difference could be larger than TARGET ERROR

and the robot will continue moving instead of stopping. Modify the program to solve this problem.

47

should be 1/8 = 0.125 (or less). In Section 3.1, we solved this problem by scaling the
integer division, but there is a better solution.

The Aseba native function math.muldiv(A, B, C, D) computes A = (B · C)/D in 32-
bit arithmetic. Therefore, GAIN P can be defined to be 8 and the value of motor power

computed without using a scaling factor:

error = abs (TARGET - prox.horizontal[2])

call math.muldiv(motor_power, error, 1, GAIN_P)

if motor_power > 500 then motor_power = 500 end

Programming note: In my program, the statements in the event handler for prox are
only run if the state is on and not off. However, I placed the computations of error and
motor power before checking the state so that I can observe them in the Variables pane
without actually running the algorithm.

A proportional-integral controller (advanced)

Program file approach-pi.aesl

While the proportional controller does not collide with the object, it may not get as close
as we want it to. A proportional-integral controller can to a better job by using the accumu-
lated error to control the power setting. In mathematics, an accumulated sum is called an
integral.

To implement a proportional-integral controller, use a variable error sum to accumulate
the error and then add it to the motor power after scaling by the reciprocal of the integral
gain GAIN I. To prevent error sum from growing too large, the error is divided by a scale
factor SUM FACTOR before it is added to error sum:

error = abs (TARGET - prox.horizontal[2])

error_sum = error_sum + (error / SUM_FACTOR)

call math.muldiv(motor_power, error, 1, GAIN_P)

motor_power = motor_power + error_sum / GAIN_I

if motor_power > 500 then motor_power = 500 end

Experiment with the gains to see if you can detect a difference between the proportional
controller and the proportional-integral controller.

48

Chapter 11

Fuzzy Logic Control

The control algorithms in the previous chapter used mathematical computations. An
alternate approach is to use Fuzzy logic, which was originally proposed by Lotfi A. Zadeh
in 1965. In fuzzy logic, the control algorithms use rules:

• If the temperature is low and the humidity is high, set the heater to high.

• If the temperature is low and the humidity is low, set the heater to medium.

The logic is “fuzzy” because the rules are expressed in terms of linguistic variables like
temperature which do not have precise mathematical specifications, but only imprecise
linguistic specifications like high.

In this chapter we implement a fuzzy logic controller for the task from the previous chap-
ter of approaching an object.

This project is complex. It assumes that you have studied an intro-
duction to fuzzy logic, for example, from this online tutorial or from
Section 2.2 of Kevin M. Passino and Stephen Yurkovich. Fuzzy Control,
Addison-Wesley, 1998.

Overview

A fuzzy logic controller consists of three phases that are run sequentially:

Fuzzify The values of the sensors are converted into values of linguistic variables called
premises. Each premise specifies the certainty with which we believe that the variable
is true. There will be three variables: far, closing, near.

Apply rules A set of rules expresses the control algorithm. Given a set of premises, a
consequent is inferred. There will be five variables for the consequents: very fast,
fast, cruise, slow, stop.

Defuzzify The consequents are combined in order to produce an crisp output, which for
our project is the power applied to the motors.

49

http://en.wikipedia.org/wiki/Fuzzy_logic
http://en.wikipedia.org/wiki/Lotfi_A._Zadeh
http://blog.peltarion.com/2006/10/25/fuzzy-math-part-1-the-theory/

A
A
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�
�
�

s s s s s s
1 2 3 4 5 6(0) (4000)

far closing near

0

100

Figure 11.1: Fuzzify the center horizontal sensor

Certainties of the premises and consequents are given in the range 0.0
(not at all certain) through 1.0 (completely certain). Since Aseba does
not support floating-point numbers, they will be scaled to the range 0
through 100.

Fuzzify

When approaching an object, the value read by the center horizontal sensor increases
from 0 to a large number: over 4000, depending on your robot and the reflecting prop-
erties of the object.1 The precise value returned by the sensor needs to be fuzzified—
converted to the value of a linguistic variable. Figure 11.1 shows three graphs for con-
verting the sensor values into certainties of the variables for far, closing and near. The
x-axis is the value returned by the sensor and the y-axis is the certainty.

The labeled points on the x-axis refer to thresholds: (1) FAR LOW, (2) CLOSING LOW,

(3) FAR HIGH, (4) NEAR LOW, (5) CLOSING HIGH, (6) NEAR HIGH. If the value of the
sensor is below (1) FAR LOW, then we are completely certain that the object is far away. If
the value is between (2) CLOSING LOW and (3) FAR HIGH then we are somewhat certain
that the object is far away but also somewhat certain that it is closing. The fuzziness
results from the overlapping ranges: when the value is between point (2) and point(3),
we can’t say with complete certainty if the object is far away or closing.

1It is a good idea to use reflecting tape as noted on page 4.

50

�
�
�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
As���

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
As���

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
As���

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
As���

�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
As

0 100 200 300 400
0

100

Figure 11.2: Defuzzify to obtain the crisp motor setting

Apply rules

The three premises—the certainties of far, closing and near—are used to compute five
consequents using the following rules:

1. If far then very fast

2. If far and closing then fast

3. If closing then cruise

4. If closing and near then slow

5. If near then stop

The certainties of the consequents resulting from rules 1, 3, 5 are the same as the certain-
ties of the corresponding premises. When there are two premises, as in rules 2 and 4, the
certainties of the consequents are the minimum of the certainties of the premises. Since
both of the premises must apply, we can’t be more certain of the consequent than we are
of the smaller of the premises.

Defuzzify

The next step is to combine the consequents, taking into account their certainties. Fig-
ure 11.2 shows the output motor powers for each of the five consequents. For example,
if we were completely certain that the output is cruise, the center graph in the figure
shows that the motor power would be set to 200, but if we were less certain, the motor
power would be less or more.

For our rules more than one consequent can have positive values. These are combined
using the areas of the trapezoids defined by the certainties. Figure 11.3 shows the conse-
quent cruise with a certainty of 40 and the consequent fast with a certainty of 20.

51

�
�
�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
A

40

20

0 100 200 300 400
0

100

Figure 11.3: Areas defined by the certainties of the consequents

Let w and h be the width and height of the triangle. Then the area of the trapezoid
bounded by the certainty h′ is given by the formula:2

wh′ − wh′(
h′

2h
).

For w = h = 100 and h′ = 20, 40, the areas are:

100 · 20− 100 · 20 · 20
200 = 1800

100 · 40− 100 · 40 · 40
200 = 3200.

To obtain a crisp value, the center of gravity is computed. This is the sum of the ar-
eas weighted by the center of each triangle divided by the sum of the areas. For the
example—and removing the scaling factor of 100—this gives:

18 · 3 + 32 · 2
18 + 32

= 39.

This is the crisp value can now be scaled to the range 0 through 500 of the motors.

State machine

There are two states: 0 for off and 1 for on.

Constants

Define the six thresholds as shown in Figure 11.1.

2The derivation of the formula is given in an appendix to this chapter.

52

Variables

The main variables are a three-element array premises and a five-element array consequents.
Another five-element array contains the centers of the output membership functions.
The output is stored in the variable crisp.

Event handlers and subroutines

• The state is turned on and off using the front and center button event handlers.

• When a proximity event occurs, three subroutines fuzzify, apply rules, defuzzify
are called in sequence, and then the value of crisp is assigned to the motor targets.

• Subroutine fuzzify checks the value of the center horizontal sensor against the
threshold values. The certainties defined by the functions in Figure 11.1 are stored
in the array premises.

• Subroutine apply rules checks for non-zero values in premises and then assigns
certainties to the array consequents as described above.

• Subroutine defuzzify computes the areas and center of gravity to obtain a crisp
value.

Programming notes

• You can’t really see how the algorithm works by observing the robot. Instead, ob-
serve the variables in the table at the left of the window. Even better, assign the val-
ues of the premises and consequents to the circle LEDs after calling apply rules.
Since the certainties are scaled to the range 0 through 100, by dividing by three, the
certainties can be seen from the intensity of the LEDs:

call leds.circle(premises[0]/3, premises[1]/3, premises[2]/3,

consequents[0]/3, consequents[1]/3, consequents[2]/3,

consequents[3]/3, consequents[4]/3)

• Scale the values appropriately since floating-point arithmetic is not supported.

• The native function math.multdiv is very useful for carrying out the computations.

Program file fuzzy.aesl

53

Appendix: Computing the area from the certainty

The following diagram shows a triangle of width w and height h cut off at height h′:

�
�
�
�
�
�
�
�
�
�
�A
A
A
A
A
A
A
A
A
A
A

w

w′

6

h

6

6

h′

h− h′

The area of the trapezoid is the difference between the areas of the two triangles:

a = wh/2− w′(h− h′)/2.

By similar triangles:
h

h− h′
=

w
w′

,

so:

w′ =
w(h− h′)

h

Substituting:

a =
wh
2
− w(h− h′)(h− h′)

2h

=
w(h2 − (h− h′)2)

2h

=
w(h2 − h2 + 2hh′ − h′2)

2h

=
w(2hh′ − h′2)

2h

= wh′ − wh′(
h′

2h
).

54

Chapter 12

Localization

How can the robot know where it is?

Consider a robot that is navigating within a known environment for which it has a map.
The following map shows a wall with five doors (dark gray blocks) and three areas where
there is no door (light gray blocks):

0 1 2 3 4 5 6 7

The task of the robot is to enter a specific door, say the one at position 4. But how can
the robot know where it is? In Chapters 6, 9, you learned about odometry, which enables
a robot to determine its current position given a know starting position. For example, if
the robot is at the left end of the wall:

0 1 2 3 4 5 6 7

�
�

it knows that it has to travel four times the width of each door, while if the robot is at the
following position:

0 1 2 3 4 5 6 7

�
�

the required door is the next one to the right. Unfortunately, odometry is subject to error
in the measurement of the robot’s speed and direction, so it is quite likely that as time

55

goes by the robot will get lost. The purpose of localization algorithms is to determine the
robot’s position within a known environment. In this chapter, we implement a simple
one-dimensional version of the Markov algorithm.

This chapter follows the explanations of the algorithms
given in the first week of the online course Artificial Intelli-
gence for Robotics by Sebastian Thrun, which can be found at
https://www.udacity.com/course/artificial-intelligence-for-robotics–
cs373.

Sensing increases certainty

The robot assigns a probability to the eight positions where it might be located. Initially,
it has no idea where it is, so each position will be assigned the probability 1.0/8 = .125:1

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.13 .13 .13 .13 .13 .13 .13 .13

Suppose now that the robot uses its sensors and detects a dark gray area. Now its un-
certainty is reduced, because it knows that it is in front of one of the five doors. The
probability distribution shows .2 for each of the doors and .0 for each of the walls:

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.20 .20 .20 .20 .20

.0 .0 .0

1The labels on the bars in the graphs in this chapter are rounded.

56

https://www.udacity.com/course/artificial-intelligence-for-robotics--cs373
https://www.udacity.com/course/artificial-intelligence-for-robotics--cs373

Next our mobile robot moves forwards (to the right) and again senses a dark gray area.
There are now only three possibilities: it was at position 0 and moved to 1, it was at 4
and moved to 5, or it was at 5 and moved to 6. If the robot’s initial position was 6, after
moving right it would no longer detect a dark gray area, so it could not have been there.
The probability is now .33 for each of these three positions:

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.0

.33

.0 .0 .0

.33 .33

.0

After the next step of the robot, if it again detects a door, it is without doubt at position 6,
while if it does not detect a door, it is either at position 2 or position 7.

Uncertainty in sensing

The difference between a dark gray door and a light gray wall is not too great, and as the
paint ages it might become more and more difficult to distinguish between them. Fur-
thermore, as you have experienced, the robot’s sensors do not give uniform responses
and they can change over time. Therefore, the robot cannot detect with complete cer-
tainty whether is senses a door or a wall.

We will model this by assigning probabilities to the detection. If the robot senses dark
gray, we specify that the probability is .9 that it has (correctly) detected a door and .1 that
it has (mistakenly) detected a wall. Conversely, if it senses light gray, the probabilities are
.1 for a door and .9 for a wall.

After sensing dark gray at a position where there is a door, we only know with probability
.125× .9 = .1125 that a door has been correctly detected; however, there is still a .125×
.1 = .0125 possibility that it has mistakenly detected a door. After normalizing (see
sidebar), the probability distribution is:

57

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.19 .19

.02 .02

.19 .19 .19

.02

The set of probabilities of the possible outcomes of an event must add
up to 1 since one of the outcomes must occur. The probabilities that we
computed add up to much less than 1:

.1125 + .1125 + .0125 + .0125 + .1125 + .1125 + .1125 + .0125 = .575.

We must normalize the probabilities by dividing by the sum .575 so that
the sum will be 1. We have .1125/.575 ≈ .19 and .0125/.575 ≈ .02, so:

.19 + .19 + .02 + .02 + .19 + .19 + .19 + .02 ≈ 1.

The robot now moves to the right and we will assume that the probability distribution
is cyclic, that is, the value associated with position 7 becomes the value associated with
position 0:

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.02

.19 .19

.02 .02

.19 .19 .19

If the robot again senses dark gray, the probability of being at positions 1, 5 or 6 should
increase. Computing the probabilities by multiplying and normalizing gives:

58

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.3 .3 .3

.29

.0

.29 .29

.3

If the robot moves right again and senses a third dark gray area, the distribution becomes:

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.7 .7 .7 .1 .0
.7

.64

.7

Not surprisingly, the robot is almost certainly at position 6.

Specification

In order the careful examine the computations, our initial implementation will not move
the robot. Instead, we will place the robot over black and white areas on the table and
touch a button: first, to cause the robot to read the ground sensors and to compute the
new probability distribution, and then to move the distribution (cyclically) to the right.
The values of the variables can be examined in the Variables table (see page 3.1).

The values of the probability distributions will also be displayed in the circle LEDs. The
robot will be localized—will have computed its position with a high degree of certainty—
when exactly one LED is bright and the others are dim.

System design

There are two subroutines: sense which computes the changes in the probabilities as a
result of reading the sensors, and move which virtually moves the robot one position to
the right.

59

State machine

There are two states that remember whether sense or move is to be performed next.

Constants

• LED: A scale factor for displaying probabilities in the LEDs.

• THRESHOLD: The value below which black is detected.

• P HIT: The probability of detecting black when on a black area or detecting white
when on a white area.

• P MISS: The probability of detecting black when on a white area or detecting white
when on a black area.

Variables

• world: An 8-element array with the map of the environment. It is initialized by
[1, 1, 0, 0, 1, 1, 1, 0], corresponding to the diagram at the beginning of the
chapter, where 1 means that a door exists at that position and 0 means that a wall
exists at that position.

• beliefs: An 8-element array with the current probability distribution of what the
robot believes is its position. The array is initialized by the uniform distribution
with 125 in each element.

• state: State variable 0 = sense, 1 = move.

• Auxiliary variables: i, hit, temp, sum.

Event handlers and subroutines

• Event button.center: Initialize beliefs to the uniform distribution and set state
to 0.

• Event button.forward: Call subroutine sense or move depending on the state and
update the value of state.

• Subroutine display beliefs: Display the values of the elements of beliefs in the
circle LEDs after scaling approximately to the range 0 through 32.

• Subroutine sense: Perform the following operations:

60

– If both ground sensors are below the THRESHOLD, detect a door, otherwise de-
tect a wall.

– For each position in world, if the detection matches the element (door or wall),
multiply the corresponding position in beliefs by P HIT; otherwise, multiply
by P MISS.

– Normalize the elements in beliefs by dividing each one by the sum of the
elements.

• Subroutine move: Move elements of beliefs one position to the right cyclically.

Programming notes

• The probabilities in beliefs are scaled to the range 0 through 1000.

• The factors P HIT and P MISS are scaled to the range 0 through 10.

• Use the native function math.multdiv to carry out the computations.

Program file local-simple.aesl

Experiments

1. We showed how three measurements are sufficient to localize the robot if it starts
at position 4. Try other positions and see if the algorithm works.

2. Experiment with the values of P HIT and P MISS. How low can you specify P HIT

and have the algorithm still work?

Uncertain motion

As well as uncertainty in the sensors, robots are subject to uncertainty in their motion. We
can ask the robot to move one “position” to the right, but it might move two positions, or
it might move very little and remain in its current position. Let us modify the program
for localization to take this uncertainty into account.

Let b be the belief array. The subroutine sense computed b′, the new values of the ele-
ments, using the formula:2

b′i = bi × p,

2The computations must take account of the cyclic movement.

61

where p is P HIT or P MISS, depending on whether the sensor value matches the map or
not. The subroutine move simply moved the values to the right b′i = bi−1. With uncer-
tainty, move must perform the following computation:

b′i = (bi−2 × p2) + (bi−1 × p1) + (bi × p0),

where pn is the probability that the robot has moved n positions:

bi−2

PPPPPPPPPq

bi−1

Q
Q
Q
QQs

bi

?

p0p1p2

b′i

It is highly likely that the robot will move correctly, so reasonable values are p1 = 0.8 and
p0 = p2 = 0.1. (Don’t forget to normalize after performing the computation.) With these
values for uncertainty, the beliefs after sensing three black areas are:

p

0.0

1.0

x
0 1 2 3 4 5 6 7

.11 .17
.04 .01 .02

.13

.46

.05

The robot is likely at position 6, but it is less certain than before (.46 instead of .64).

Programming notes

Declare an array save of the same length as beliefs and copy to save (using the native
function math.copy) the values of beliefs before starting the computation. The original
values are thus remain available.

Program file local-uncertain-motion.aesl

Localization of a moving robot

Let us now attempt localization of a moving robot. Place three strips of tape at regular
intervals on a table to simulate the three doors at positions 4, 5 and 6. Set the motors to

62

a constant speed and set a timer to the amount of time it takes the robot to travel from
one strip to the next. When the timer event occurs, call the subroutines sense and move.
Start the robot before the first strip and see if it locates itself at position 6 after sensing the
third strip.

Program file local-move.aesl

Appendix: The mathematics of localization

Bayes rule

The problem of localization is to determine the probability p(xi) that the robot is at po-
sition xi for all i. In particular, given the reading z of the sensor, what is the probability
that we are at position xi? This is expressed as a conditional probability p(xi | z). The
data we have available are the current probability p(xi) that we are at xi, and p(z | xi),
the conditional probability that the sensor reads z if we are in fact at xi. In the example,
initially, p(xi) = .125 for all positions xi, and, if we are at a door, the probability that the
sensor detects this correctly is .9. We can now multiply these two probabilities to obtain
(the unnormalized) probability p̄(xi | z), in the example, .125× .9 = .1125.

To normalize the probability, we have to divide it by the sum of the results obtained by
multiplying at each position:

p(z) = ∑
i

p(z | xi) · p(xi).

In the example, the sum is .575 and .1125/.575 = .19.

The formula:

p(x | z) =
p(z | x) · p(x)

p(z)
is called Bayes rule.

Total probability

To compute the change in probability when the robot moves, we used the formula:

b′i = (bi−2 · p2) + (bi−1 · p1) + (bi · p0).

Expressed in terms of probability, this is:

p′(xi) = p(xi−2) · p(xi | xi−2) + p(xi−1) · p(xi | xi−1) + p(xi) · p(xi | xi),

where p(xi | xj) is the probability that the current position is xi given that the previous
position was xj. The general case is:

p′(xi) = ∑
j

p(xj) · p(xi | xj),

which is called the total probability.

63

Chapter 13

Thymio the Surveyor

Land surveying is a set of techniques for determining the precise position of points on the
earth.1 Since ancient times, surveying was used to mark out fields and to build large
structures. This project uses the Thymio to determine the location of an object using two
techniques: measuring the angle and distance to the object, and measuring the angle
to the object from two different positions. The results will be very inaccurate, but the
techniques and computations reflect actual practice.

Take a piece of paper marked with a grid of 1 cm squares. Place the Thymio so that its
front panel is at the left edge of the grid and place an object somewhere on the grid:2

Measuring angles using the Thymio

The sensors are on the front panel of the robot, which forms an arc of a circle whose center
is the hole used to place a pencil for drawing. Place a protractor with its center over the
hole and use a thread to form a line from the center to a sensor (Figure 13.1). Read the
angle from the protractor. Since the sensors are spaced uniformly, we define a constant
THETA and the five angles will be:

1See the Wikipedia article on surveying for an overview.
2Print the file grid.pdf in the images directory. The file was generated from the LATEX file grid.tex. We

used reflecting tape on the object as described on page 4 to increase the detection range.

64

https://en.wikipedia.org/wiki/Surveying

Figure 13.1: Measuring the angle between the sensors

-2*THETA, -THETA, 0, -THETA, 2*THETA.

13.1 Determining position from an angle and a distance

Chapter 8 describes how to determine the distance to an object by relating the values
returned by the horizontal proximity sensors to distance in centimeters. The angle to the
object is determined by the horizontal sensor that returns the highest value.

Computing the coordinates

Figure 13.2 shows the geometry of the surveyor. The object is indicated by the dark
point. The Thymio is at the origin of a coordinate system with (0, 0) defined as the hole.
The x-axis goes through the axis of the wheels, while the y-axis points forwards. Given
the angle θ to the object as defined by the horizontal proximity sensor with the highest
value, and the distance d to the object defined by the value returned by that sensor, the
coordinates can be computed using elementary trigonometry.

Variables and constants

• THETA: The angle between two sensors.

65

$
%

e

x-axis

y-axis��
��

�
��

�
��

�
��

�
��*

θ

d
x = d sin θ

y = d cos θ

u

Figure 13.2: The geometry of the surveyor

• OFFSET: The distance between the hole in the Thymio and its front panel.

• proximity: An array for storing the values read from the sensor.

• max prox: The proximity sensor with the maximum value.

• max value: The value returned by sensor max prox.

• distance: The distance from the Thymio hole to the object.

• angle: The angle from the y-axis to the object.

• x, y: The coordinates of the object.

You may need additional variable for indices and for storing temporary values.

Event handlers and subroutines

It is sufficient to use one event like touching a button to initiate the measurements and
computations, but I used two events so that the distance and angle are displayed on the
top, bottom and circle LEDs before the computation is done, and later the coordinates are
displayed. The subroutines for displaying data on the LEDs will not be described here;
you are invited to design your own method for doing this.

There are three subroutines for performing the computations:

• get angle: Get the angle by checking which horizontal proximity sensor returns
the maximum value.

• get distance: Compute the distance corresponding to the maximum sensor value.

66

$
%

e

$
%

e

u

�
��

��
��

�
��

�
��

�
��
�

PPPPPPPPPPPPPPPPP

α

β

γ

α′

β′

b

a

c

Figure 13.3: Triangulation

• get coordinates: The computation of the coordinates from the distance and angle
is conceptually very simple, but difficult to do on the Thymio because the trigono-
metric functions do not use standard values for parameters like degrees or radians.
Study the computations in Chapter 9 to see how this is done.

Programming notes

Program file survey1.aesl

Experiments

1. Make a more accurate determination of the angle. If two horizontal sensors return
values that are “more or less” the same, use the average of their two angles.

13.2 Determining position by triangulation

Surveyors use microwave and light waves to measure distance. Before these were avail-
able, it was extremely difficult to accurately measure distances, especially distances to
very distant or inaccessible objects. Angles were always relatively easy to measure.
Therefore, triangulation was used in surveying. If you know two angles of a triangle
and the length of the included side, you can compute the lengths of the other sides. Once
these are known, the position of a distant object can be computed as we did above.

67

Consider the setup shown in Figure 13.3. The Thymio first measures the angle α; then it
is moved a distance of c and the angle β can be measured. The lengths a and b can be
computed using the law of sines for a triangle:

a
sin α′

=
b

sin β′
=

c
sin γ

.

We have used the interior angles of the triangle α′ = 90◦ − α, β′ = 90◦ − β.

Given the angle α, let us we compute the length b. We have:

γ = 180◦ − α′ − β′ = 180◦ − (90◦ − α)− (90◦ − β) = α + β.

From the law of sines:

b =
c sin β′

sin γ
=

c sin(90◦ − β)

sin(α + β)
=

c cos β

sin(α + β)
.

Programming notes

Two events were used: touch the forwards button to measure α, then move the Thymio
to the new position and touch the backwards button to measure β and compute b.

The object was placed at coordinates (8, 12) and the two measurements were done after
moving the Thymio 24 cm. The results were α = 20◦ and β = 40◦, giving b = 22.
Measuring the distance from the center hole to the object showed that this is a reasonable
value. Of course, the extremely coarse measurement of the angles makes an accurate
determination of the position impossible.

Program file survey2.aesl

Experiments

1. Program the Thymio so that it moves to the second position by itself after making
the first measurement.

68

Part III

Multiple Robots

69

Chapter 14

Infrared Communications

The infrared horizontal proximity sensors of the Thymio are normally used for detecting
objects, but they can also be used for communication with another Thymio. This chapter
describes techniques that enable two robots to communicate. A projects using communi-
cations will be presented in the next chapter.

Using Aseba Studio with two robots

Run two copies of Studio from the desktop. If you have two Thymio robots connected
to two different USB ports, you will see that the two robots are listed in the initial target-
selection window. Choose a different robot for each copy of Studio. When you load and
run a program from one copy of Studio, it will run on the robot connected to that copy.
In the following sections, each robot will have a separate program; to identify them, we
append tx to one file name and rx to the other.

Establishing communications

To enable and disable infrared communications (IRC), use the native function:

call prox.comm.enable(parameter)

A value of 1 for the parameter enables communication, while a value of 0 disables it.

For convenience, in each program in this chapter we associate a button with enabling and
disabling IRC. Use the top LEDs to display the state:

onevent button.forward

call leds.top(32,32,32)

call prox.comm.enable(1)

onevent button.backward

call leds.top(0,0,0)

call prox.comm.enable(0)

70

Test IRC

One Thymio TX transmits a message to another Thymio RX. The content of the message
changes every second. RX changes its top color depending on the received message.

When IRC is enabled, the transmitter transmits the value of the predefined variable
prox.comm.tx every 100 ms. We use a timer to change its value every second:

timer.period[0]=1000

onevent timer0

if prox.comm.tx == 1 then

prox.comm.tx = 2

else

prox.comm.tx = 1

end

When a robot receives a message, the event prox.comm occurs and the value that was
transmitted in the message is copied into the predefined variable prox.comm.rx. The
value of this variable is used to decide on the top color:

onevent prox.comm

if prox.comm.rx == 1 then

call leds.top(0,32,0)

else

call leds.top(32,0,0)

end

Program file test-*.aesl

The value transmitted and received can use 10 bits: the values 0–1023.

Come here

One Thymio TX will send a message to ask a second Thymio RX to come meet it. When
RX receives a message it will move forward until it is near TX, at which point it will stop.
This demonstrates that IRC does not interfere with the normal functioning of the sensors
for detecting objects.

The content of the message is not important so TX sets prox.comm.tx to an arbitrary
value. RX turns the motors on when it receives a message and turns the motors off when
its center sensor detect TX:

71

onevent prox.comm

motor.left.target = 100

motor.right.target = 100

call leds.top(0, 32,0)

onevent prox

if prox.horizontal[2] > 3000 then

motor.left.target = 0

motor.right.target = 0

call leds.top(32, 0,0)

call prox.comm.enable(0)

end

Since the message is transmitted repeatedly (ten times per second), the event prox.comm
will occur repeatedly, but that is not a problem since the motor is always set to the same
value. However, when RX detects TX, IRC must be disabled so that subsequent events
do not turn on the motor again.

Program file come-*.aesl

The behavior depends on the message

Let us extend the previous project so that the movement of the receiving robot RX de-
pends on the message received. TX will send a message whose value (1 or 2) depends on
which button is touched. RX will go either forwards or backwards:

onevent prox.comm

if prox.comm.rx == 1 then

motor.left.target = 100

motor.right.target = 100

call leds.top(0, 32,0)

else

motor.left.target = -100

motor.right.target = -100

call leds.top(0, 0, 32)

end

Program file come-go-*.aesl

72

Two-way communications

So far, one Thymio has always transmitted messages and the other received them. Let
us extend the above program so that when the moving robot RX detects the robot TX,
it stops and also transmits a message so that TX can turn its top LEDs red. RX adds an
assignment of the value 2 to prox.comm.tx meaning that it has detected TX:

onevent prox

if prox.horizontal[2] > 3000 then

prox.comm.tx = 2

motor.left.target = 0

motor.right.target = 0

call leds.top(32, 0,0)

end

Add an event handler to TX so that it changes color when it receives this message:

onevent prox.comm

if prox.comm.rx == 2 then

call leds.top(32, 0, 0)

end

Unfortunately, this program does not work as required. The reason is that the robot TX
continues transmitting which causes the moving robot RX to start moving again. Since
TX is near RX, the center sensor of RX continues to detect TX, changes its color to red,
and sends the value 2 again. To prevent this behavior, we have to disable IRC once the
value 2 is sent and received. We can either disable TX when it receives the value:

onevent prox.comm

if prox.comm.rx == 2 then

call leds.top(32, 0, 0)

call prox.comm.enable(0)

end

or we can disable IRC in RX, but we must do so only after the value 2 is sent. This is
ensured by waiting until the next occurrence of the prox event:

onevent prox

if prox.comm.tx == 2 then

call prox.comm.enable(0)

end

if prox.horizontal[2] > 3000 then ...

Program file come-arrived-*.aesl

73

Chapter 15

Distributed Mutual Exclusion

Place two Thymios facing each other with a reflective object about halfway between them:

T1 �
�

T2�
���

��

What will happen if we run the following program in both robots?

onevent button.forward

motor.left.target = 100

motor.right.target = 100

onevent prox

if prox.horizontal[2] > 4000 then

motor.left.target = 0

motor.right.target = 0

end

Program file no-mutex.aesl

If both forward buttons are touched at about the same time, the two robots will simulta-
neously move towards the object; each robot will stop when it is close to the object.

Distributed algorithms

Suppose that we want the robots to approach the object one-by-one. This is called the crit-
ical section problem or the mutual exclusion problem. It is a fundamental problem the area
of computing called concurrent and distributed programming. Obviously, we can achieve
this goal by touching the button of one robot, waiting until it has reached the object and
then touching the button of the other robot. The difficulty with this solution is that it as-
sumes a central computing device that makes decisions for both robots. This is unrealistic
in practice: consider the Internet where millions of computing devices synchronize and
communicate with no central control. The basic requirement for distributed algorithms
is that the identical algorithm run on all participating computing devices and that the
access to services is fair, that is, some devices will not receive preferential treatment.

74

The Ricart-Agrawala algorithm

We now describe a distributed algorithm for mutual exclusion.1 How do people synchro-
nize access to ticket counters, food service stations, and so on? They take slips of paper
with numbers and are served in numerical order, thus implementing a queue. The queu-
ing is facilitated by an electronic display, but a queue can be implemented simply by
having people compare numbers with each other.

The two robots choose random numbers:

T1

47

�
�

T2

23

�
���

��

Each robots sends its number in a message to the other robot:

• T1 receives 23 from T2 and compares it with its own number 47. Since T2 has the
lower number, it should be served before T1. Therefore, T1 sends a reply to T2 to
indicate that it can approach the object.

• T2 receives the reply from T1 and approaches the object. At the same time, T2 has
received the message from T1 with its number. Since 47 is greater than 23, T2 does
not send a reply to T1; instead, it records that the sending of the reply is deferred.
Since T1 does not receive a reply, it does not approach the object.

• When T2 is close to the object it stops. It also recalls that it has deferred the reply to
T1 and sends it now.

• T1 receives the reply and approaches the object.

It is important to note that both robots run the same program and that the algorithm is
fair, in the sense that if run repeatedly, the random numbers will give priority to each
robot about half the time.

State machine

Touching the forward button indicates that the robot wants to approach the object. It
sends a request and starts moving when the reply is received:

1The algorithm is based on the Ricart-Agrawala algorithm, which achieves mutual exclusion for any
number of nodes repeatedly trying to enter a critical section. The algorithm it takes into account several
difficulties that we ignore here for simplicity, for example, the possibility that two robots choose the same
random number. A full explanation can be found in Chapter 10 of M. Ben-Ari. Principles of Concurrent and
Distributed Programming (Second Edition), Addison-Wesley, 2006.

75

�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�0=initial

1=want to
approach

2=request
sent

3=reply
received

- - -
?

Variables

• number: The number chosen by this robot (0–1022). The value 1023 is used for the
reply message.

• state: The current state of the state machine.

• deferred: Set to 1 if the reply must be deferred.

Programming notes

The event handler for the center button will stop the motors, enable IRC, and set initial
values of the variables, including prox.comm.tx and prox.comm.rx. The event handler
for the forward button will set state to 1 to initiate the algorithm.

Most of the processing is done in the event handler for IRC communication. In state 1, a
random number is chosen and sent to the other Thymio:

onevent prox.comm

if state == 1 then

call math.rand(number)

number = abs(number) & 1022

prox.comm.tx = number

state = 2

return

end

In state 2, the prox.comm.rx is checked to see if it is the reply message (1023); if so, the
motors are started:

if state == 2 then

if prox.comm.rx == 1023 then

motor.left.target = 100

motor.right.target = 100

state = 3

return

end

end

76

If the robot is not competing to approach the object (it is in state 0) or if a lower number
is received from the other robot, the reply is sent; otherwise it is deferred:

if state == 0 or prox.comm.rx < number then

prox.comm.tx = 1023

else

deferred = 1

end

When the robot is close to the object the motors can be turned off. The variable deferred
is checked to see if a reply must be sent to the other robot:

onevent prox

if prox.horizontal[2] > 4000 then

motor.left.target = 0

motor.right.target = 0

if deferred == 1 then

prox.comm.tx = 1023

else

prox.comm.tx = 0

end

end

Program file ra.aesl

Testing the program

Place the robots and an object as shown in the above diagram.2 Load and run the program
into both robots. Touch the center buttons to initialize. Touch the forward button on one
of the robots; only that robot should approach the object. Move the robot back to its
starting position and touch the center button to reset. Now touch both forward buttons
at the same time. One robot should approach and stop, and then the other robot should
approach and stop.

2The robots have to be relatively close so that IRC works and slightly off-center so that the object doesn’t
obstruct IRC.

77

	Introduction
	I Projects
	The Cat Catches the Mouse
	How Fast is the Thymio?
	Line Following
	Composing Music On-the-Fly
	Odometry
	Image Recognition

	II Advanced Concepts in Robotics
	Nonlinearity
	Odometry in Two Dimensions
	Control
	Fuzzy Logic Control
	Localization
	Thymio the Surveyor

	III Multiple Robots
	Infrared Communications
	Distributed Mutual Exclusion

